

RNNHAACHE

(Quantum) Machine Learning for Calorimeter Simulations

DESY-CMS Meeting

Florian Rehm [CERN openlab, RWTH Aachen]

Sofia Vallecorsa [CERN openlab], Kerstin Borras [DESY, RWTH Aachen], Dirk Krücker [DESY], Vikram Saletore [Intel], Hans Pabst [Intel], Adel Chaibi [Intel],

29.04.2021

- Quick introduction to computing constraints of calorimeter simulation
- Speeding up simulations using machine learning
 - Generative Adversarial Networks (GAN)
 - Physics validation
- Reduced precision computing
- Quantum computing
 - Possible advantages of quantum computing over classical computing
 - First steps: 1D QGAN
 - Recent and future work: 2D QGAN

Calorimeter Simulations

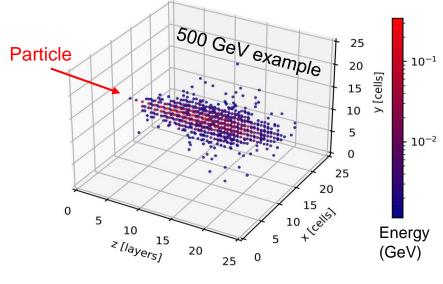
- Calorimeter detectors measure the energy of particles
- Calorimeter simulations are based on Geant4
- Simulations use about 50% of the resources of the worldwide LHC grid
- LHC high luminosity phase requires 100 times more simulated data*
- → Develop a new approach which occupies less resources
- → Employ deep learning

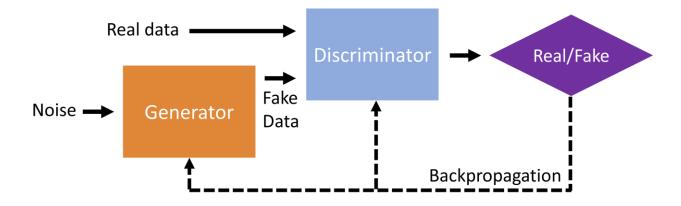
*A Roadmap for HEP Software and Computing R&D for the 2020s https://doi.org/10.1007/s41781-018-0018-8

Generative Adversarial Networks

3DGAN

- Train two networks (Generator & Discriminator) in a minmax game
- We want to further decrease the computational resources



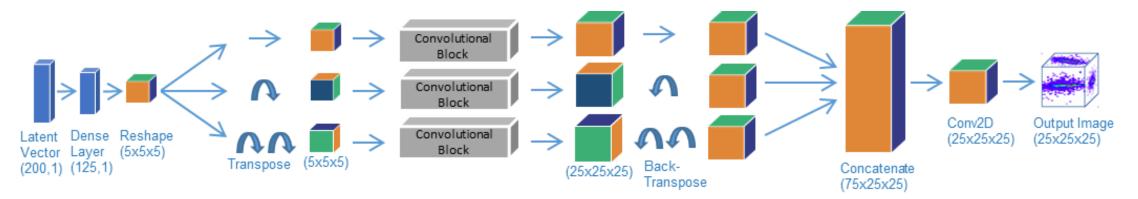


- 200 000 3D shower images with granularity 25x25x25
- Energies between 2-500 GeV

Florian Rehm - DESY-CMS Meeting

New Conv2D Generator Architecture

- Conv3D layers are computational demanding
- Conv3D layers are not yet supported in less than 32bit precision
 - → Creating neural network consisting only of Conv2D layers



 \rightarrow Solve 3D image problems with only 2D convolutional layers

Computational Evaluation

Model:	Number of Parameters	Inference Time [s]	Speed up vs Geant4
Conv3D	965 000	16.8	11 100x
Conv2D	2 055 000	4.9 (3.4x faster)	38 000x

- New Conv2D model has more than double as much parameters as the previous Conv3D model
- Inference of Conv2D model is faster
- → 38000x speed up vs Geant4 simulation

Physics Evaluation

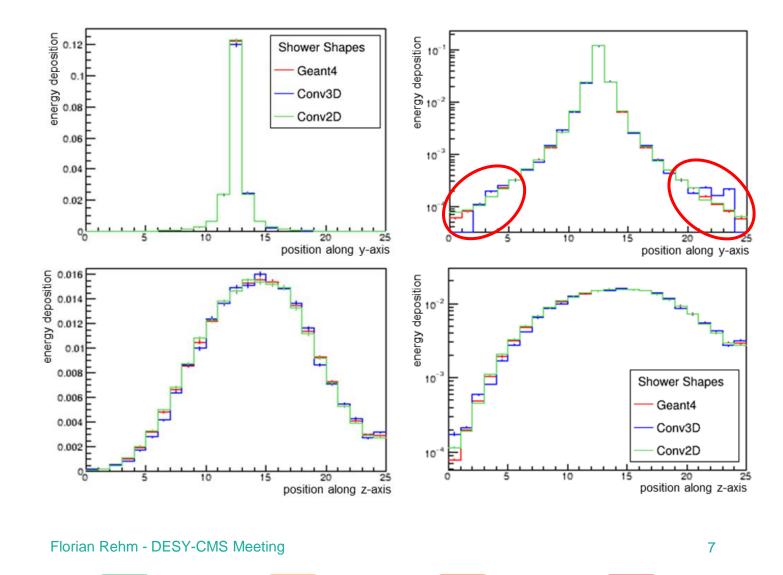
Shower Shapes

• Cell wise the Mean Squared Error (MSE) between GAN and validation data along the three canonical axes:

Model	MSE (Lower is better)	-
Conv3D	0.048	
Conv2D	0.027 🗸	

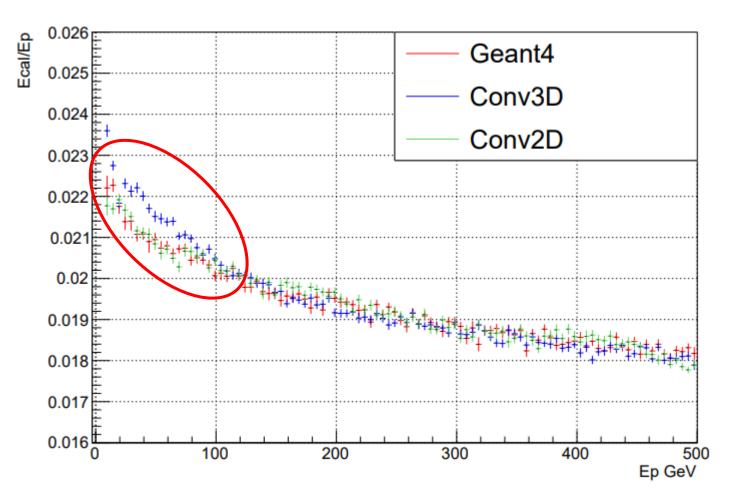
• Projection of the shower along the different axis

CERN openlab Conv2D performs better along the tails



Physics Evaluation

- Ratio between the total measured energy ECAL and the initial particle energy E_p
- Conv2D performs better for energies below 100 GeV

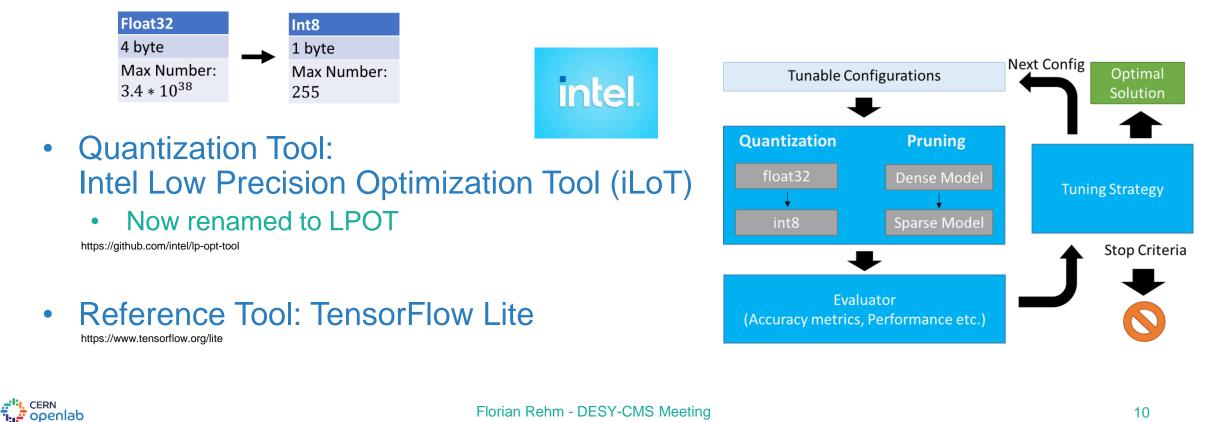


Reduced Precision Computing

Reduced Precision Computing

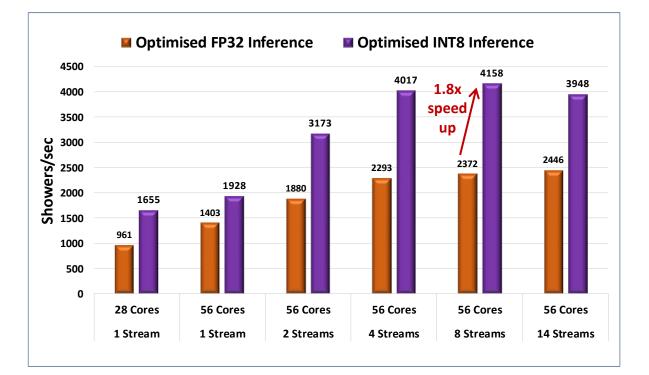
• Quantization: Converting a number from a higher to a lower format

• E.g. from float32 to int8



Computational Evaluation

(of iLoT model)



• 1.8x speedup due to quantization

Total speedup of 68000x
versus Monte Carlo

Model	Speedup vs Monte Carlo
float32	38000x
int8	68 000x

 Reduction in model memory size of 2.26x

Model	Memory [MB]
float32	8.08
int8	3.57

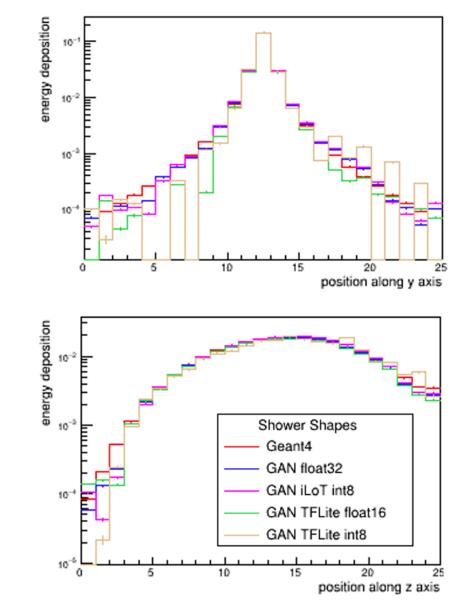
Physics Evaluation

Shower Shapes

Mean Squared Error (MSE)
between GAN and validation data

Model	MSE (Lower is better)	+
float32	0.061	
iLoT int8	0.053 🗸	
TFLite float16	0.253	
TFLite int8	0.340	

- iLoT shows a good accuracy
- TensorFlow Lite performs worse



Summary Machine Learning

- New Conv2D network: **3.4x** speed up + better physics accuracy
- Quantized iLoT model: **1.8x** speed up + good accuracy

→ Total 68000x speed up vs Geant4 + maintaining physics accuracy

Quantum Computing

Florian Rehm - DESY-CMS Meeting

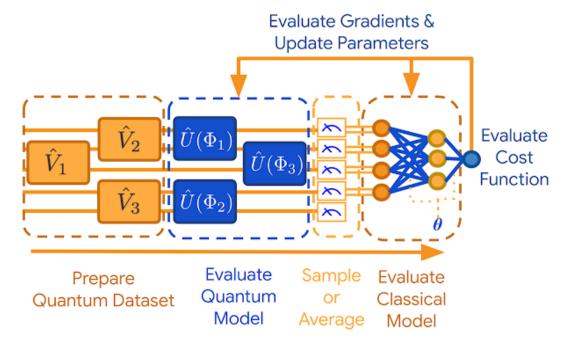
14

Advantages of Quantum Computing

- Use of quantum properties
 - Entanglement
 - Superposition
- Hope to solve problems faster and / or more accurately
- "Quantum Advantage" not yet reached
 - Initial investigations: aimed at understanding advantages and challenges
- Hybrid models:

cern openlab

• Quantum circuit + classical optimization



https://ai.googleblog.com/2020/03/announcing-tensorflow-quantum-open.html

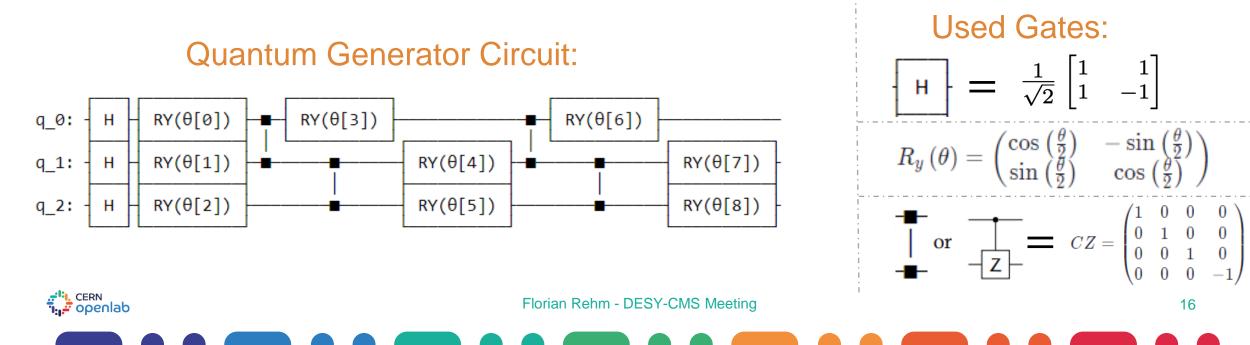
Hybrid Quantum GAN Model QGAN 1D

- Hybrid GAN model:
 - quantum generator
 - classical discriminator
 - classical optimization

- Only 1D 8-pixel images
 - 3 qubits $(2^3 = 8)$ in quantum generator circuit

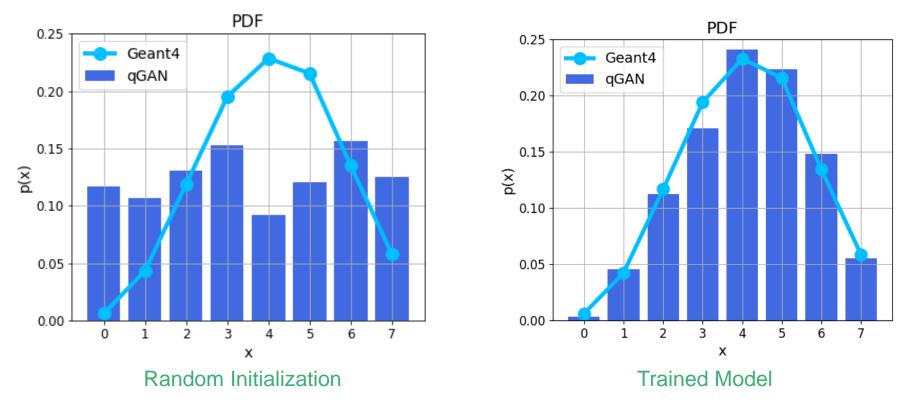
16

Run on quantum simulator



Hybrid QGAN 1D

First Results



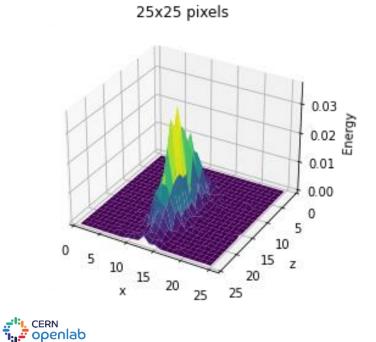
→ Good Results

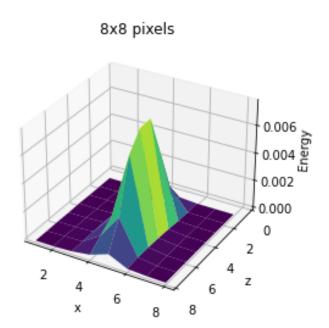
 \rightarrow Moving on to more complicated data representation

Hybrid QGAN 2D

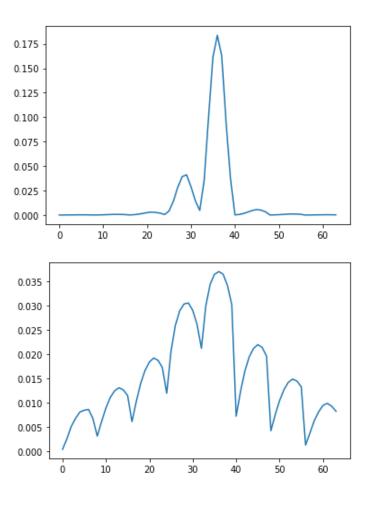
Training Data Downsampling

- 8 * 8 pixels \rightarrow 64 pixels in total
- 1D stacking
- Applying logarithm





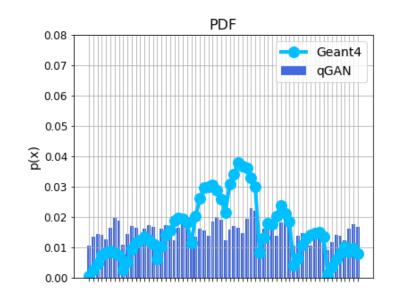
Florian Rehm - DESY-CMS Meeting



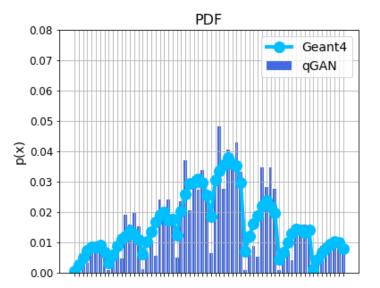
Hybrid QGAN 2D

First Results

- 8 * 8 = 64 pixels
- 6 qubits $(2^6 = 64)$ in quantum generator
- Run on quantum simulator



Random Initialization



Trained Model

- \rightarrow Promising results
- → Further optimization

Quantum Computing: Future Work

- Main goal: Make calorimeter more realistic
 - Higher number of pixels
 - Conditional case: different primary particle energies
 - Different generator circuit architectures
 - Optimize generator circuit to maximum express ability
 - Different data encoding strategies
 - Discriminator as quantum circuit
 - Error mitigation of quantum simulations with noise
 - ...
 - • • •
- Later: Run on a real quantum device

QUESTIONS?

